TIBTRONIX TECHNOLOGY CO., LTD.

TXPLXG03D

10Gb/s 300m XFP Transceiver Hot Pluggable, Duplex LC, 850nm, VCSEL, Multi mode

2015/3/9

Shenzhen Tibtronix Technology Co., Ltd.3/F,12th Building, Nangang 1st Industrial Park, Baimang Xili, Songbai Road, Nanshan District, Shenzhen, ChinaTel: +86 755 23316583Fax: +86 755 29810056E-mail:sales@tibtronix.comhttp://www.tibtronix.com

Features:

- ♦ Support multi protocol from 9.95Gb/s to 11.3Gb/s
- ♦ Hot pluggable 30 pin connector
- ♦ Compliant with XFP MSA
- ♦ Transmission distance of 300m over multi mode fiber
- ♦ 850nm Vcsel laser transmitter.
- ♦ Duplex LC connector
- ♦ 2-wire interface for management and diagnostic monitor
- ♦ XFI electrical interface with AC coupling
- ♦ Single power supply voltages : +3.3V
- ♦ Temperature range 0°C to 70°C
- ♦ Power dissipation: <1.5W</p>
- ♦ RoHS Compliant Part

Applications:

- ♦ 10GBASE-SR/SW Ethernet
- ♦ 1200-Mx-SN-I 10G Fibre Channel
- ♦ Other optical links

Description:

TIBTRONIX' TXPLXG03 Small Form Factor 10Gb/s (XFP) transceivers are compliant with the current XFP Multi-Source Agreement (MSA) Specification. The high performance uncooled 850nm Vcsel transmitter and high sensitivity PIN receiver provide superior performance for 10G Fibre Channel and Ethernet applications up to 300m optical links.

• Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T _{ST}	-40	+85	°C
Case Operating Temperature	T _{IP}	0	+70	°C
Supply Voltage	V _{CC3}	-0.5	+4.0	V

• Electrical Characteristics (T_{OP} = 0 to 70 °C)

Parameter	Symbol	Min	Тур	Max	Unit	Note		
Supply Voltage	Vcc3	3.13		3.45	V			
Supply Current	lcc3			400	mA			
Module total power	Р			1.5	W			
Transmitter								
Input differential impedance	Rin		100		Ω	1		
Differential data input swing	Vin,pp	150		820	mV			
Transmit Disable Voltage	VD	2.0		Vcc	V			
Transmit Enable Voltage	V _{EN}	GND		GND+ 0.8	V			
Transmit Disable Assert Time	T_off			100	ms			
Tx Enable Assert Time	T_on			100	ms			
Receiver								
Differential data output swing	Vout,pp	300	500	850	mV			
Data output rise time	tr			35	ps	2		
Data output fall time	tf			35	ps	2		
LOS Fault	$V_{LOSfault}$	Vcc – 0.5		Vcc _{HOST}	V	3		
LOS Normal	V _{LOS norm}	GND		GND+0.5	V	3		
Power Supply Rejection	PSR	See Note 4 below				4		

Notes

1. After internal AC coupling.

2. 20 - 80 %

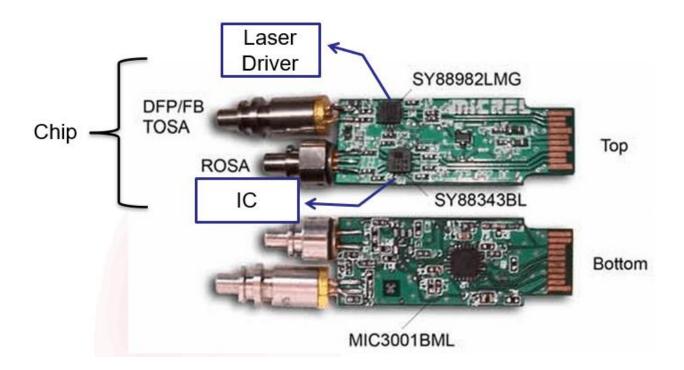
3.Loss of Signal is open collector to be pulled up with a 4.7k – 10kohm resistor to 3.15 – 3.6V. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

4. Per Section 2.7.1. in the XFP MSA Specification.

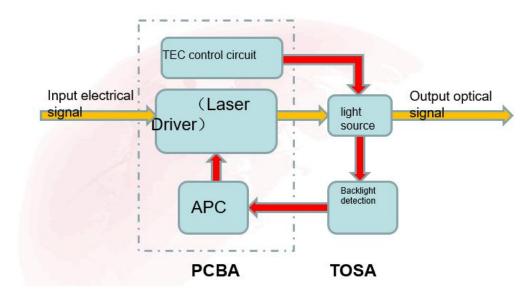
Optical Parameters(T_{OP} = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.		
Transmitter								
Operating Date Rate	BR	9.95		11.3	Gb/s			
Bit Error Rate	BER			10 ⁻¹²				
Maximum Launch Power	P _{MAX}	-7.3		-1	dBm	1		
Optical Wavelength	λ	840	850	860	nm			
Optical Extinction Ratio	ER	3.5			dB			
RMS Spectral Width	λ_{RMS}			0.45	nm			
Sidemode Supression ratio	SSRmin	30			dB			
Rise/Fall Time (20%~80%)	Tr/Tf			35	ps			
Average Launch power of OFF	POFF			-30	dBm			
Transmitter								
Tx Jitter	Txj	Compliant with each standard						
		requirements						
Optical Eye Mask		IEEE802.3ae				2		
Receiver								
Operating Date Rate	BR	9.95		11.3	Gb/s			
Receiver Sensitivity	Sen			-11.1	dBm	2		
Maximum Input Power	P _{MAX}	0			dBm	2		
Optical Center Wavelength	λ	840		860	nm			
Receiver Reflectance	Rrx			-12	dB			
LOS De-Assert	LOSD			-12	dBm			
LOS Assert	LOSA	-30			dBm			
LOS Hysteresis	LOS _H	0.5		5	dB			

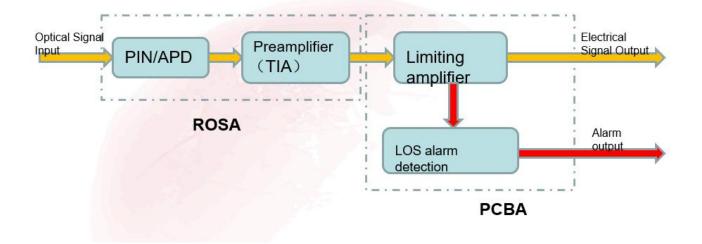
Notes:


1. The optical power is launched into MMF.

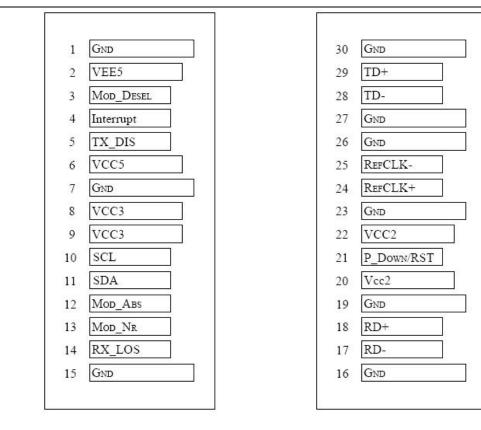
2. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps BER<10⁻¹².


• More Basic Information

Composition of the general model with main components


Working Principle

Transmitting terminal working principle :


Receiving terminal working principle:

• Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

Bottom of Board (As view through top of board) Top of Board

• Pin Function Definitions

Pin	Logic	Symbol	Name/Description	
1		GND	Module Ground	
2		VEE5	Optional –5.2 Power Supply – Not required	
3	LVTTL-I	Mod-Desel	Module De-select; When held low allows the module to	
			respond to 2-wire serial interface commands	
4	LVTTL-O	Interrupt	Interrupt (bar); Indicates presence of an important	2
			condition which can be read over the serial 2-wire	
			interface	
5	LVTTL-I	TX_DIS	Transmitter Disable; Transmitter laser source turned off	
6		VCC5	+5 Power Supply	
7		GND	Module Ground	1
8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I	SCL	Serial 2-wire interface clock	2
11	LVTTL-	SDA	Serial 2-wire interface data line	2
	I/O			
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present.	2

			Grounded in the module.	
13	LVTTL-O	Mod_NR	Module Not Ready	
14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	
15		GND	Module Ground	
16		GND	Module Ground	1
17	CML-O	RD-	Receiver inverted data output	
18	CML-O	RD+	Receiver non-inverted data output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply – Not required	
21	LVTTL-I	P_Down/RS	Power Down; When high, places the module in the low	
		Т	power stand-by mode and on the falling edge of	
			P_Down initiates a module reset	
			Reset; The falling edge initiates a complete reset of the	
			module including the 2-wire serial interface, equivalent	
			to a power cycle.	
22		VCC2	+1.8V Power Supply – Not required	
23		GND	Module Ground	1
24	PECL-I	RefCLK+	Reference Clock non-inverted input, AC coupled on the	3
			host board – Not required	
25	PECL-I	RefCLK-	Reference Clock inverted input, AC coupled on the host	3
			board – Not required	
26		GND	Module Ground	1
27		GND	Module Ground	1
28	CML-I	TD-	Transmitter inverted data input	
29	CML-I	TD+	Transmitter non-inverted data input	
30		GND	Module Ground	1

Note

1. Module circuit ground is isolated from module chassis ground within the module.

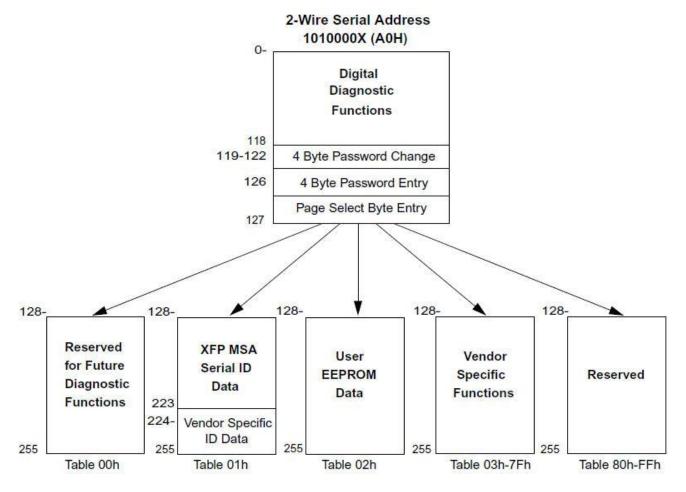
2. Open collector; should be pulled up with 4.7k – 10k ohms on host board to a voltage between 3.15Vand 3.6V.

3. A Reference Clock input is not required.

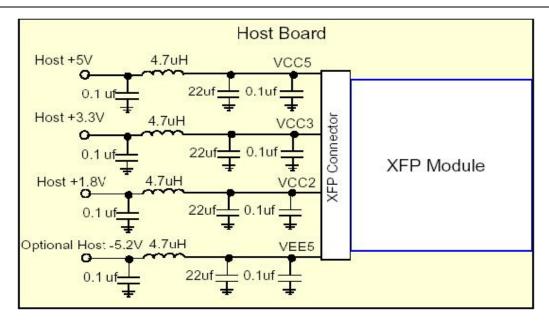
• Digital Diagnostic Functions

As defined by the XFP MSA 1, TIBTRONIX'S XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

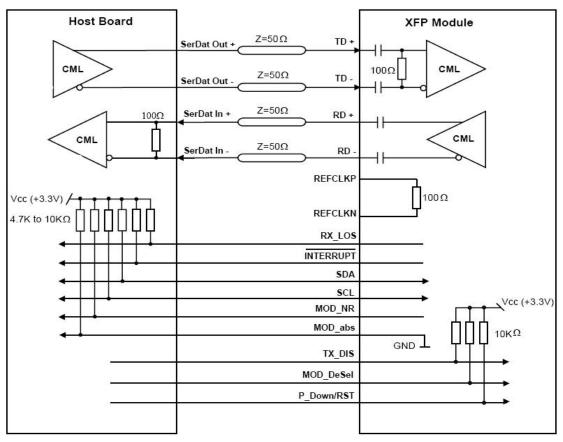
- ✓ Transceiver temperature
- ✓ Laser bias current
- ✓ Transmitted optical power
- ✓ Received optical power
- ✓ Transceiver supply voltage


It also provides a sophisticated system of alarm and warning flags, which may be used to alert

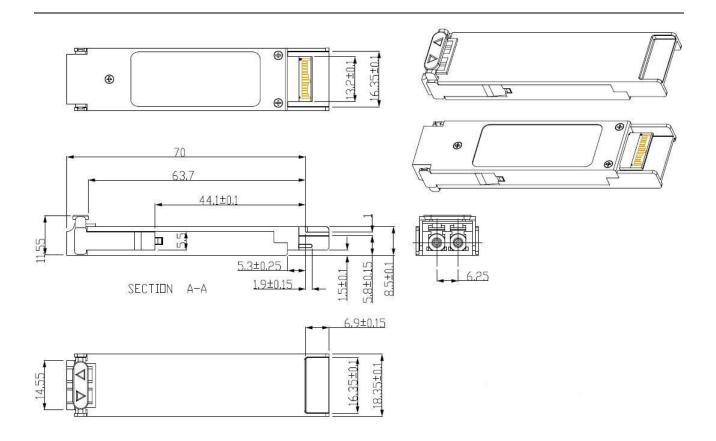
end-users when particular operating parameters are outside of a factory-set normal range.


The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

For more detailed information including memory map definitions, please see the XFP MSA Specification.



Recommended Circuit


Recommended Host Board Power Supply Circuit

Recommended High-speed Interface Circuit

Mechanical Dimensions

TIBTRONIX reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information. Published by Shenzhen TIBTRONIX Technology Co., Ltd. Copyright © TIBTRONIX

All Rights Reserved

