SHENZHEN TIBTRONIX TECHNOLOGY CO., LTD.

T8PMTH01D

200Gb/s QSFP56 SR4 100m Transceiver Hot Pluggable, MPT/MPO-12 Connector, Multi Mode 4x50Gb/s VCSEL 850nm transmitter

2024/5/25

Shenzhen Tibtronix Technology Co., Ltd.

3/F,12th Building, Nangang 1st Industrial Park, Baimang Xili, Songbai Road, Nanshan District, Shenzhen, China

Tel: +86 755 23316583 Fax: +86 755 29610056 E-mail: sales@tibtronix.com http://www.tibtronix.com

Features:

- ♦ 4 VCSEL 850nm parallel design
- ♦ MPT/MPO-12 connector
- ♦ Compliant to QSFP56 MSA V2.0
- ♦ IEEE 802.3cd 200GBASE-SR4 Specification compliant
- ♦ Compliant with CMIS 4.0 or SFF8636 Management interface specifications
- ♦ 4x106.25Gb/s electrical interface (200GAUI-4)
- ♦ Up to 100m transmission on multi mode fiber (MMF OM4) with FEC
- ♦ Maximum power consumption 4W
- ♦ Single +3.3V power supply operating
- ♦ Temperature range 0°C to 70°C
- ♦ RoHS Compliant Part

Applications:

- ♦ Networks
- ♦ Data center and Cloud

Description:

The T8PMTH01D is a 200Gb/s QSFP56 optical module designed for 100m optical communication applications. The module converts 4 channels of 50Gb/s (PAM4) electrical input data to 4 channels of parallel optical signals, each capable of 50Gb/s operation for an aggregate data rate of 200Gb/s.

On the receiver side, the module converts 4 channels of parallel optical signals of 50Gb/s each channel for an aggregate data rate of 200Gb/s into 4 channels of 50Gb/s (PAM4) electrical output data.

An optical fiber cable with an MTP/MPO-12 connector can be plugged into the QSFP56 SR4 module receptacle. Host FEC is required to support up to 100m fiber transmission.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	T _S	-40		+85	°C
Supply Voltage	V _{CC} T, R	-0.5		4	V
Relative Humidity	RH	10		95	%

Recommended Operating Environment:

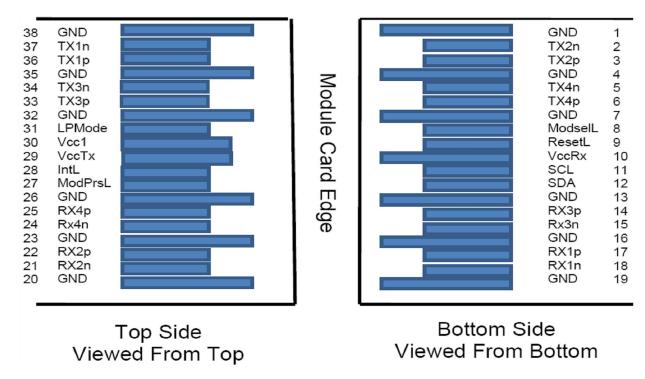
Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _C	0		+70	°C
Supply Voltage	V _{CCT, R}	+3.13	3.3	+3.47	V
Supply Current	I _{cc}			1200	mA
Power Dissipation	PD			8	W
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴	
Link Distance over OM4				100	m

● Electrical Characteristics (T_{OP} = 0 to 70 °C, VCC = 3.13 to 3.47 Volts

Parameter		Min	Тур	Max	Unit	Note
Data Rate per Channel		-	26.5625		Gbps	
Differential termination mismatch				10	%	
Transmitter						
Single Ended Output Voltage Tolerance		0.3		4	V	
Transmit Input Diff Voltage	VI	900			mV	
Receiver						
Single Ended Output Voltage Tolerance		0.3		4	V	
Rx Output Diff Voltage	Vo			900	mV	
Near-end ESMW(Eye symmetry mask width)			TBD		UI	
Rx Output Rise and Fall Voltage	Tr/Tf		TBD		ps	1

Note: 1. 20 ~ 80%

Optical Parameters(TOP = 0 to 70 °C, VCC = 3.0 to 3.6 Volts)


Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Modulation Format	PAM4					
Data Rate per Channel		-	26.5625		Gbps	
Lane Wavelength Range			850		nm	

T8PMTH01D

Average Optical Power each lane	Ро	-6.5		4	dBm	
RMS Spectral Width				0.6	nm	
Optical Modulation Amplitude (OMA), each lane		-6.5		4	dBm	
Outer Optical Modulation Amplitude (OMAouter), each lane		-4.5		3	dBm	
Launch power in OMAouter minus TDECQ		-5.9			dBm	
Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane				4.5	dB	
Extinction Ratio	ER	3			dB	
Transmitter Transition Time, Each Lane				17	ps	
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
Relative Intensity Noise	Rin			-131	dB/HZ	1
Optical Return Loss Tolerance		-	-	12	dB	
Receiver						•
Modulation Format			PAM4			
Data Rate per Channel		-	26.5625		Gbps	
Lane Wavelength Range			850		nm	
Damage Threshold	THd	5			dBm	1
Average Receive Power, each Lane	R	-6.5		4	dBm	
Outer Optical Modulation Amplitude (OMAouter), each lane		-4.5		3	dBm	
Launch power in OMAouter minus TDECQ		-5.9			dBm	
Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane				4.5	dB	
RSSI Accuracy		-2.5		2.5	dB	
Receiver Reflectance	Rrx			-12	dB	
LOS De-Assert	LOS _D			-10	dBm	
LOS Assert	LOS _A	-20			dBm	
LOS Hysteresis	LOS _H	1.5			dB	

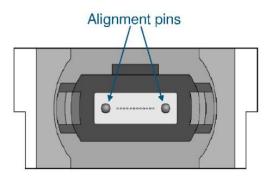
Note: 1. 12dB Reflection

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

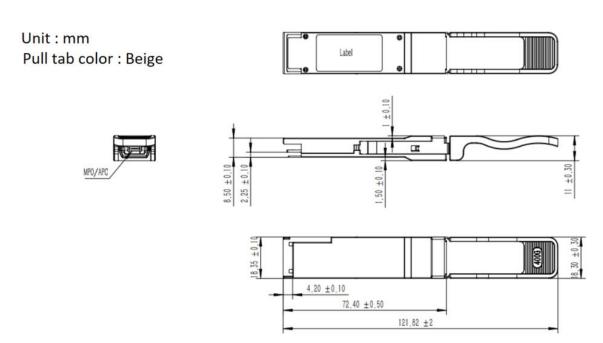
Pin Description

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Output	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Output	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Inverted Data Output	
15	CML-O	Rx3n	Receiver Non-Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Inverted Data Output	


T8PMTH01D

			_	
18	CML-O	Rx1n	Receiver Non-Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Inverted Data Output	
34	CML-I	Tx3n	Transmitter Non-Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Inverted Data Output	
37	CML-I	Tx1n	Transmitter Non-Inverted Data Output	
38		GND	Ground	1

Notes:


- GND is the symbol for single and supply(power) common for QSFP28 modules, All are common within
 the QSFP28 module and all module voltages are referenced to this potential otherwise noted. Connect
 these directly to the host board signal common ground plane. Laser output disabled on TDIS >2.0V or
 open, enabled on TDIS <0.8V.
- VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied
 concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1 and VccTx
 may be internally connected within the QSFP28 transceiver module in any combination. The connector
 pins are each rated for maximum current of 500mA.

Optical interface

Transmit Channels: 1 2 3 4
Unused positions: x x x x
Receive Channels: 4 3 2 1

Mechanical Dimensions

TIBTRONIX reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information. Published by Shenzhen TIBTRONIX Technology Co., Ltd.

Copyright © TIBTRONIX

All Rights Reserved.