
TIBTRONIX TECHNOLOGY CO., LTD.

T8BLHG30D1-0409&0904

100Gb/s 30km QSFP28 BIDI LR1 Transceiver Hot Pluggable, Simplex LC Connector, Single mode

2024/7/23

Tibtronix Technology Co., Ltd. Third floor west, 1st Building, Tangtou No. 1 Road south, Zhongyuntai Technology Industrial Park, Baoan district, Shenzhen, China, 518108 Tel: +86 755 23316583 Fax: +86 755 29810056 E-mail: sales@tibtronix.com

http://www.tibtronix.com

Features:

- ♦ QSFP28 MSA compliant
- ♦ 100G Lambda MSA 100G-LR1 Specification compliant Interoperable with IEEE 802.3cu
- ♦ Supports 53.125Gbaud
- ♦ Simplex LC connector
- ♦ 4x25G electrical interface (OIF CEI-28G- VSR)
- Single +3.3V power supply operating ,Maximum power consumption 4.5W
- ♦ Temperature range 0° C to 70° C
- ♦ RoHS Compliant

Applications:

- ♦ Data Center Interconnect
- ♦ 100G Ethernet
- ♦ Enterprise networking

Description:

The T8BLHG30D1-0409&0904 provides 100GBase-BX throughput up to 30km over single-mode fiber (SMF) using a wavelength of 1304.58nm-TX/1309.14nm-RX via an LC connector. The design is compliant to 100GbASE-LR1 of the IEEE 802.3-2012 Clause 88 standard IEEE 802.3cu CAUI-4 chip to module electrical standard ITU-T G.959.1-2012-02 standard . The module converts 4 inputs channels (ch) of 25Gbps electrical data to 1 lane optical signal channel for 100Gb/s(PAM4) optical transmission. Reversely, on the receiver side, the module a optical 100Gb/s(PAM4) input into 1 lane signal, and converts them to 4 lanes output electrical data.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40		+85	°C
Supply Voltage	V _{cc} T, R	-0.5		4	V
Relative Humidity	RH	0		85	%

Recommended Operating Environment:

Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _c	0		+70	°C
Supply Voltage	V _{CCT, R}	+3.13	3.3	+3.47	V

Supply Current	I _{CC}		1300	mA
Power Dissipation	PD		4.5	W

• Electrical Characteristics (T_{OP} = 0 to 70 °C, VCC = 3.13 to 3.47 Volts

Parameter	Symbol	Min	Тур	Max	Unit	Note
Data Rate per Channel		-	25.78125		Gbps	
Control I/O Voltage-High	VIH	2.0		Vcc	V	
Control I/O Voltage-Low	VIL	0		0.7	V	
Inter-Channel Skew	TSK			35	Ps	
RESETL Duration			10		Us	
RESETL De-assert time				100	ms	
Power On Time				100	ms	
Transmitter				·		
Single Ended Output Voltage Tolerance		0.3		Vcc	V	1
Common mode Voltage Tolerance		15			mV	
Transmit Input Diff Voltage	VI	150		1200	mV	
Transmit Input Diff Impedance	ZIN	85	100	115		
Data Dependent Input Jitter	DDJ		0.3		UI	
Receiver		-				
Single Ended Output Voltage Tolerance		0.3		4	V	
Rx Output Diff Voltage	Vo	370	600	950	mV	
Rx Output Rise and Fall Voltage	Tr/Tf			35	ps	1
Total Jitter	TJ		0.3		UI	

Note: 1 20~80%

• Optical Parameters(TOP = 0 to 70 °C, VCC = 3.0 to 3.6 Volts)

Parameter			Тур	Мах	Unit	Ref.
T8BLHG30D1-0409		1304.06	1304.58	1305.1		
T8BLHG30D1-0904	λ	1308.61	1309.14	1309.66	nm	
ion Ratio	SMSR	30	-	-	dB	
ver	PT	0	-	5.6	dBm	
Outer Optical Modulation Amplitude (OMAouter)				6.4	dBm	
Launch Power in OMAouter minus Transmitter and Dispersion Eye Closure (TDECQ)					dBm	ER≥4.5dB
	T8BLHG30D1-0409 T8BLHG30D1-0904 ion Ratio rer tion Amplitude (OMAouter) AAouter minus Transmitter	T8BLHG30D1-0409 λ T8BLHG30D1-0904 λ ion Ratio SMSR rer PT tion Amplitude (OMAouter) P _{OMA}	$ \begin{array}{c} T8BLHG30D1-0409 \\ \overline{} \\ T8BLHG30D1-0904 \end{array} $	T8BLHG30D1-0409 λ 1304.06 1304.58 T8BLHG30D1-0904 λ 1308.61 1309.14 ion Ratio SMSR 30 - rer PT 0 - tion Amplitude (OMAouter) P _{OMA} 1 - Aouter minus Transmitter 1 - -	$\frac{1304.06}{1304.58} = \frac{1305.1}{1309.66}$ $\frac{1304.58}{1309.14} = \frac{1309.66}{1309.66}$ ion Ratio SMSR 30 rer PT 0 - 5.6 tion Amplitude (OMAouter) POMA 1 6.4 Aouter minus Transmitter 1	$ \frac{1304.06}{1304.06} = \frac{1}{1304.06} = \frac{1}{1305.1} $ $ \frac{1308.61}{1309.14} = \frac{1}{1309.66} $ nm $ \frac{1}{1308.61} = \frac{1}{1309.14} = \frac{1}{1309.66} $ nm $ \frac{1}{100} = \frac{1}{100$

Launch Power in O	MAouter minus Transmitter					15	
and Dispersion Eye	Closure (TDECQ)		1			dBm	ER<4.5dB
Transmitter and Di PAM4 (TDECQ)	TDECQ	-	-	3.9	dB		
Extinction Ratio		ER	5				
Optical Return Loss	Tolerance		-	-	20	dB	
Average Launch Pov	wer OFF Transmitter,	Poff			-30	dBm	
Relative Intensity No	vise	Rin			-136	dB/HZ	1
Optical Return Loss	Optical Return Loss Tolerance			-	12	dB	
Receiver		•					
Blue Wavelength Assignment	T8BLHG30D1-0409		1308.61	1309.14	1309.66		
Green Wavelength Assignment	T8BLHG30D1-0904	λ	1304.06	1304.58	1305.1	nm	
Total Damage Thres	hold	THd	-2.4			dBm	1
Average Power at R	eceiver Input,	R	-14.7		-3.4	dBm	
Receiver	TECQ≤1.4	Rxsens			-12.5	dBm	
Sensitivity	1.4≤TECQ≤3.6	SRS			-13.9+TE CQ	dBm	1
RSSI Accuracy			-2		2	dB	
Receiver Reflectance		Rrx			-26	dB	
LOS De-Assert		LOSD			-15	dBm	
LOS Assert	LOSA	-25			dBm		
LOS Hysteresis		LOSH	0.5			dB	

Note 1 12dB Reflection

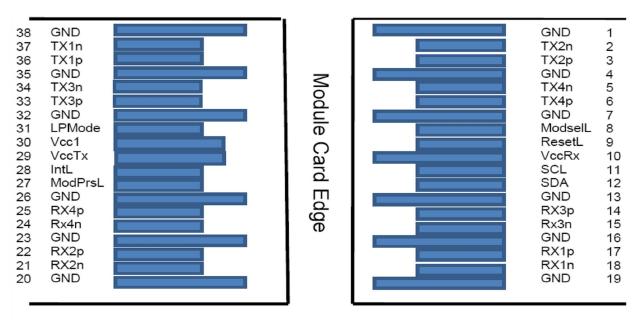
• Timing for Soft Control and Status Functions

Parameter	Symbol	Max	Unit	Conditions
				Time from power on1, hot plug or rising
Initialization Time	t_init	2000	ms	edge of Reset until the module is fully
				functional2
				A Reset is generated by a low level longer
Reset Init Assert Time	t_reset_init	2	μs	than the minimum reset pulse time present
				on the ResetL pin.
Serial Bus Hardware				Time from power on1 until module responds
	t_serial	2000	ms	to data transmission over the 2-wire serial
Ready Time				bus
Monitor Data Ready	t data	2000	100.0	Time from power on1 to data not ready, bit
Time	t_data	2000	ms	0 of Byte 2, deasserted and IntL asserted
Reset Assert Time	t_reset	2000	ms	Time from rising edge on the ResetL pin until

				the module is fully functional2
				Time from assertion of LPMode
LPMode Assert Time	ton_LPMode	100	μs	(Vin:LPMode =Vih) until module power
				consumption enters lower Power Level
Lati Assaut Times	tan lati	200		Time from occurrence of condition
IntL Assert Time	ton_IntL	200	ms	triggering IntL until Vout:IntL = Vol
				toff_IntL 500 μs Time from clear on read3
IntL Deassert Time	toff Intl	500		operation of associated flag until Vout:IntL =
Inte Deassert Time	toff_IntL	500	μs	Voh. This includes deassert times for Rx LOS,
				Tx Fault and other flag bits.
Rx LOS Assert Time	ton loc	100	ms	Time from Rx LOS state to Rx LOS bit set and
KX LOS ASSelt Time	ton_los	100	1115	IntL asserted
				Time from occurrence of condition
Flag Assert Time	ton_flag	200	ms	triggering flag to associated flag bit set and
				IntL asserted
Mask Assert Time	ton_mask	100	ms	Time from mask bit set4 until associated IntL
		100	1115	assertion is inhibited
Mask De-assert Time	toff_mask	100	ms	Time from mask bit cleared4 until associated
		100		IntlL operation resumes
	ton_ModSel			Time from assertion of ModSelL until
ModSelL Assert Time	L	100	μs	module responds to data transmission over
	-			the 2-wire serial bus
ModSelL Deassert	toff ModSel			Time from deassertion of ModSelL until the
Time	L	100	μs	module does not respond to data
				transmission over the 2-wire serial bus
Power_over-ride or				Time from P_Down bit set 4 until module
Power-set Assert Time	ton_Pdown	100	ms	power consumption enters lower Power
				Level
Power_over-ride or				Time from P_Down bit cleared4 until the
Power-set De-assert	toff_Pdown	300	ms	module is fully functional3
Time				

Note:

1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.


2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 de-asserted.

3. Measured from falling clock edge after stop bit of read transaction.

4. Measured from falling clock edge after stop bit of write transaction.

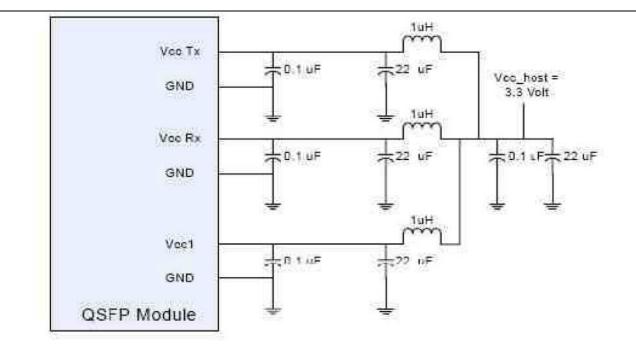
Pin Assignment

Top Side Viewed From Top

Bottom Side Viewed From Bottom

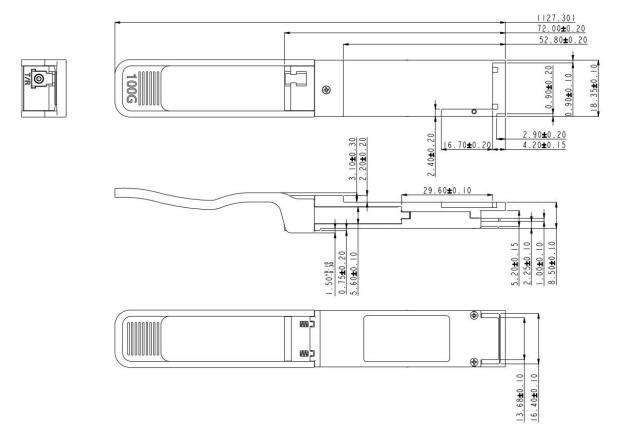
• Pin Description

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Output	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Output	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Inverted Data Output	
15	CML-O	Rx3n	Receiver Non-Inverted Data Output	


16		GND	Ground	1
17	CML-O	Rx1p	Receiver Inverted Data Output	
18	CML-O	Rx1n	Receiver Non-Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Inverted Data Output	
34	CML-I	Tx3n	Transmitter Non-Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Inverted Data Output	
37	CML-I	Tx1n	Transmitter Non-Inverted Data Output	
38		GND	Ground	1

Notes:

- GND is the symbol for single and supply(power) common for QSFP28 modules, All are common within the QSFP28 module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1 and VccTx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for maximum current of 500mA.


• Recommended Circuit

Mechanical Dimensions

TIBTRONIX reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information. Published by Shenzhen TIBTRONIX Technology Co., Ltd. Copyright © TIBTRONIX

All Rights Reserved.

