TIBTRONIX TECHNOLOGY CO., LTD.

T8BLHG80D4-2804&0482

100Gb/s QSFP28 BiDi 80km Transceiver Hot Pluggable, Simplex LC Connector, EML+PIN with SOA Single mode DDM

2024/6/27

Tibtronix Technology Co., Ltd.

Third floor west, 1st Building, Tangtou No. 1 Road south, Zhongyuntai Technology Industrial Park, Baoan district,

Shenzhen, China, 518108

Tel: +86 755 23316583 Fax: +86 755 83129773 E-mail: sales@tibtronix.com http://www.tibtronix.com

Features:

- ♦ 4x25Gb/s LAN WDM Blue or Red Side TOSA, LAN WDM Red or Blue Side ROSA with SOA
- ♦ Support 100GBASE-ZR4 for line rate of 103.125Gbps and OTU4 for line rate of 111.81Gbps
- ♦ Compliant with IEEE 802.3-2012 Clause 88 standard IEEE 802.3bm CAUI-4 chip to module electrical standard ITU-T G.959.1-2012-02 standard
- ♦ Simplex LC connector
- ♦ Single +3.3V power supply operating.
- → Temperature range 0° C to 70° C
- ♦ RoHS Compliant Part

Applications:

- ♦ 100GBASE-ZR4
- ♦ Data Center

Description:

TIBTRONIX's T8BLHG80D4 provides 100GBase-BX throughput up to 80km over single-mode fiber (SMF) using wavelengths of 1273.54, 1277.89, 1282.26, 1286.66nm-TX/1295.56, 1300.05, 1304.58, 1309.14nm-RX(1295.56, 1300.05, 1304.58, 1309.14nm-TX/1273.54, 1277.89, 1282.26, 1286.66nm-RX) via an LC connector. This bidirectional unit must be used with another transceiver or network appliance of complimenting wavelengths. Digital diagnostics functions are also available via the I2C interface, as specified by the QSFP28 MSA, to allow access to real-time operating parameters. With these features, this easy to install, hot swappable transceiver is suitable to be used in various applications, such as 100G Ethernet, data center, and storage area networks applications.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40		+85	°C
Supply Voltage	V _{CC} T, R	-0.5		4	V
Relative Humidity	RH	0		85	%

• Recommended Operating Environment:

Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _C	0		+70	°C
Supply Voltage	V _{CCT, R}	+3.13	3.3	+3.47	V
Supply Current	I _{cc}		1200	1900	mA
Power Dissipation	PD			6.5	W

● Electrical Characteristics (T_{OP} = 0 to 70 °C, VCC = 3.13 to 3.47 Volts

Parameter	Symbol	Min	Тур	Max	Unit	Note
Data Bata par Channal		-	25.78125		Chas	
Data Rate per Channel			27.9525		Gbps	
Power Consumption		-	4	6.5	W	
Supply Current	Icc		1.2	1.8	А	
Control I/O Voltage-High	VIH	2.0		Vcc	V	
Control I/O Voltage-Low	VIL	0		0.7	V	
Inter-Channel Skew	TSK			35	Ps	
RESETL Duration			10		Us	
RESETL De-assert time				100	ms	
Power On Time				100	ms	
Transmitter						
Single Ended Output Voltage Tolerance		0.3		Vcc	V	1
Common mode Voltage Tolerance		15			mV	
Transmit Input Diff Voltage	VI	150		1200	mV	
Transmit Input Diff Impedance	ZIN	85	100	115		
Data Dependent Input Jitter	DDJ		0.3		UI	
Receiver						
Single Ended Output Voltage Tolerance		0.3		4	V	
Rx Output Diff Voltage	Vo	370	600	950	mV	
		370	000	35		1
Rx Output Rise and Fall Voltage	Tr/Tf			55	ps	1

T8RI HG80D4

Total Jitter	TJ	0.3	UI	
--------------	----	-----	----	--

Note:

1. 20~80%

Optical Parameters(TOP = 0 to 70 °C, VCC = 3.0 to 3.6 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter				'		
	λ1	1272.54	1273.54	1274.54	nm	
	λ2	1276.89	1277.89	1278.89	nm	
Purple Side Four Lane Wavelength Range	λ3	1281.25	1282.26	1283.27	nm	
	λ4	1285.65	1286.66	1287.68	nm	
	λ1	1294.56	1295.56	1296.56	nm	
	λ2	1299.05	1300.05	1301.05	nm	
Write Side Four Lane Wavelength Range	λ3	1303.58	1304.58	1305.58	nm	
	λ4	1308.14	1309.14	1310.14	nm	
Side-mode Suppression Ratio	SMSR	30	-	_	dB	
Total Average Launch Power	PT	8	-	12.5	dBm	
Average Launch Power, each Lane		+2	-	6.5	dBm	
Difference in Launch Power between any two Lanes (OMA)		-	-	3	dB	
Extinction Ratio	ER	6	-	-	dB	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, (1		
Optical Return Loss Tolerance		-	-	20	dB	
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
Relative Intensity Noise	Rin			-130	dB/H Z	
Optical return loss tolerance				20	dB	
Transmitter reflectance		-	-	12	dB	
Receiver						
	λ1	1272.54	1273.54	1274.54	nm	
	λ2	1276.89	1277.89	1278.89	nm	
Purple Side Four Lane Wavelength Range	λ3	1281.25	1282.26	1283.27	nm	
	λ4	1285.65	1286.66	1287.68	nm	
	λ1	1294.56	1295.56	1296.56	nm	
	λ2	1299.05	1300.05	1301.05	nm	
Write Side Four Lane Wavelength Range	λ3	1303.58	1304.58	1305.58	nm	

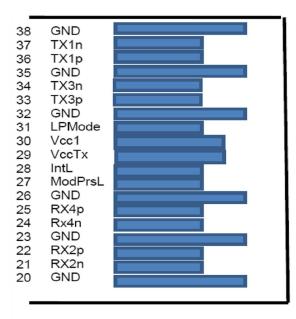
	λ4	1308.14	1309.14	1310.14	nm	
Total Damage Threshold	THd			5.5	dBm	1
Receiver Sensitivity per Lane	R			-28	dBm	
Average Power at Receiver Input, each	R	-28		0	dBm	1
Lane				,	45	_
LOS De-Assert	LOS_D			-29	dBm	
LOS Assert	LOS_A	-40			dBm	
LOS Hysteresis	LOS _H	0.5			dB	

Note

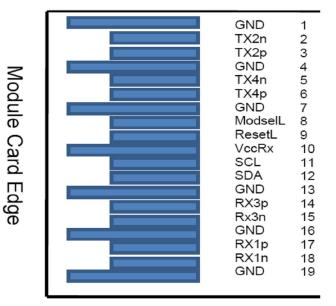
1. Sensitivity is specified at BER@5E-5 with FEC

Timing for Soft Control and Status Functions

Parameter	Symbol	Max	Unit	Conditions
				Time from power on1, hot plug or rising
Initialization Time	t_init	2000	ms	edge of Reset until the module is fully
				functional2
				A Reset is generated by a low level longer
Reset Init Assert Time	t_reset_init	2	μs	than the minimum reset pulse time present
				on the ResetL pin.
Serial Bus Hardware				Time from power on1 until module responds
Ready Time	t_serial	2000	ms	to data transmission over the 2-wire serial
Ready Time				bus
Monitor Data Ready	t data	2000	mc	Time from power on1 to data not ready, bit
Time	t_uata	2000	ms	0 of Byte 2, deasserted and IntL asserted
Reset Assert Time	t rosot	2000	mc	Time from rising edge on the ResetL pin until
Reset Assert Time	t_reset	2000	ms	the module is fully functional2
				Time from assertion of LPMode
LPMode Assert Time	ton_LPMode	100	μs	(Vin:LPMode =Vih) until module power
				consumption enters lower Power Level
Intl Assart Time	ton Intl	200	100.0	Time from occurrence of condition
IntL Assert Time	ton_IntL	200	ms	triggering IntL until Vout:IntL = Vol
				toff_IntL 500 μs Time from clear on read3
IntL Deassert Time	toff Intl	500		operation of associated flag until Vout:IntL =
IIILL Deassert Time	toff_IntL	300	μs	Voh. This includes deassert times for Rx LOS,
				Tx Fault and other flag bits.
Rx LOS Assert Time	ton los	100	mc	Time from Rx LOS state to Rx LOS bit set and
RX LOS ASSERT TIME	ton_los	100	ms	IntL asserted
				Time from occurrence of condition
Flag Assert Time	ton_flag	200	ms	triggering flag to associated flag bit set and
				IntL asserted
Mask Assert Time	ton_mask	100	ms	Time from mask bit set4 until associated IntL



				assertion is inhibited
Mask De-assert Time	toff mask	100	ms	Time from mask bit cleared4 until associated
Widsk De dssert Time	ton_mask	100	1113	IntlL operation resumes
	ton ModSel			Time from assertion of ModSelL until
ModSelL Assert Time		100	μs	module responds to data transmission over
	L			the 2-wire serial bus
ModSelL Deassert	toff ModSel			Time from deassertion of ModSelL until the
Time	i ton_iviousei	100	μs	module does not respond to data
Time	L			transmission over the 2-wire serial bus
Power over-ride or				Time from P_Down bit set 4 until module
Power-set Assert Time	ton_Pdown	100	ms	power consumption enters lower Power
rower-set Assert Time				Level
Power_over-ride or				Time from P_Down bit cleared4 until the
Power-set De-assert	toff_Pdown	300	ms	module is fully functional3
Time				


Note:

- 1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value
- 2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 de-asserted.
- 3. Measured from falling clock edge after stop bit of read transaction.
- 4. Measured from falling clock edge after stop bit of write transaction.

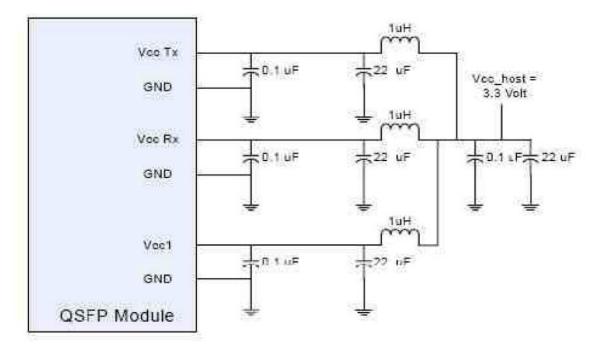
Pin Assignment

Top Side Viewed From Top

Bottom Side Viewed From Bottom

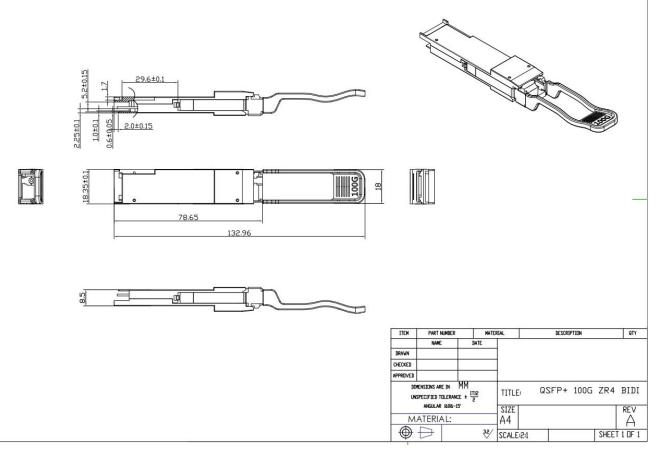
Pin Description

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Output	
6	CML-I	Тх4р	Transmitter Non-Inverted Data Output	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Inverted Data Output	
15	CML-O	Rx3n	Receiver Non-Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Inverted Data Output	
18	CML-O	Rx1n	Receiver Non-Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Inverted Data Output	
34	CML-I	Tx3n	Transmitter Non-Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Inverted Data Output	



37	CML-I	Tx1n	Transmitter Non-Inverted Data Output	
38		GND	Ground	1

Notes:


- GND is the symbol for single and supply(power) common for QSFP28 modules, All are common within
 the QSFP28 module and all module voltages are referenced to this potential otherwise noted. Connect
 these directly to the host board signal common ground plane. Laser output disabled on TDIS >2.0V or
 open, enabled on TDIS <0.8V.
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1 and VccTx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for maximum current of 500mA.

Recommended Circuit

Mechanical Dimensions

TIBTRONIX reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information. Published by Shenzhen TIBTRONIX Technology Co., Ltd.

Copyright © TIBTRONIX

All Rights Reserved.

